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The problem formulated by J&rm’an for the laminar flow of incompressible fluid 
subjected to the action of a uniformly rotating disk [lJ has a reliable numerical 

solution on condition that the disk radius is infinitely large [Z]. Its extension to 

the case of a disk of finite radius and fairly considerable Reynolds numbers is best 
carried out by the method of asymptotic analysis which is used in investigations 

of flow near the trailing edge of a flat plate [3,4]. Structure of the trail close to 
the disk edge and the order of dimensions of the transition region, which must be 
introduced in order to satisfy all boundary conditions, are established in this man- 
ner, The problem of flow in that region reduces to solving equations of the three- 
dimensional boundary layer with special boundary conditions. The asymptotic be- 

havior of related equations is studied as the regions of basic flow and of the close 
trail is gradually approached, its principal correction term in the expression for 

the coefficient of the moment of friction forces is determined for a disk of finite 

dimensions. 

1. Let us consider the steady flow of a viscous fluid induced by a disk of radius H, ro- 
tating at constant angular velocity 0. Such flow is generally described by the Navier- 
Stokes equations in which the velocity has in a cylindrical coordinate system the com- 

ponents u, ZJ, and w, in the radial, azimuthal, and axial directions, respectively, 
and the basic simplification reduces to the symmet~ of solution about the z-axis. 

Denoting dimensional coordinates by r” and 2” , density by P , pressure by p and 
kinematic viscosity by v , we introduce dimensionless variables and the small param- 
eter, respectively, by 

r’ = F” / R, 2 = z” / (d?), F (r, 2) = u / (rd?) (1.1) 
G (r, 2) = v / (rod?), K (r, 2) = w I (ewR) 

P (I”, 2) = (p - PCS) I (pwW”) 

E = He”“z = I/Y / (oRa) (1.2) 

The Navier-Stokes equations and the boundary conditions in variables (1.1) are of the 
form 

(1.3) 
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It is further assumed that the K&m& solution 

27 = Ji6 (Z), G = G-0 (Z), R = EC, (2) 

is valid for alf points with coordinates r ( I[ and fairly remote from the edge. 

At r>l at some distance from the edge there exists a trail region whose pro- 
perties are very similar to those of the trail downstream of the trailing edge of a flat 
plate [5,63, In conformity with the cited works we introduce in the analysis the stream 
function Y fr, Z), which defines the flow in radical planes drawn through the disk 
axis. By the last of Eqs, (1.3) that function is defined by the relationships 

(X*5) 
r2F :‘= $4 i IT?& r&. = --dYr I dr 

For analyyzing the trail region we shall use the new variable 

js=r-l. 
(1.6) 

and investigub the range of small s (the specific order of smallness of its values wi- 
ll be defined later), We assume, as in [5), that in the region of the near trail an inner 
and an outer subregion are distinguished, and that in the process of solution the passing 
to limit E-+ 0 is accomplished without additional distortion of the coordinate 
grid, i. e. fn “boundary layer” coordinates s and ST. 

Zn the inner part of the trail functions Y and G are sought in the form of ex- 
pansions of the form 

Y = sP’$J (9) + ‘T/r (9) -I- 1 * s 
IL 7) 

c: =r 1 + $Lg() (q) + s”‘y& (“cl) + . . *, *j 3Tf 2 i s::a 

Using (1.5) it is possible to obtain from this also the expansions for f; and E 
(L 8) 

After the ~u~~duc~~ in (X.3) of the new argument defined by (1.6) and the substitution 
into it of expressions (X. 7) and (1.81, we collect terms containing multipliers of like po- 
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wersof s and obtain equations for fib go, fl$ g, etc. Bwndary conditions for 
q = 0 correspond to conditions (1.4) when z = 0 and f>l, 

while for V--+00 the conditions of asymptotic joining with the solution of the 
external region, whose principal term corresponds to the Kbrm”an solution, must be sa- 
tisfied. By taking into consideration the form of the latter in the neighborhood of point 

z 0 it is possible to obtain for fo 
b~nda~~ond~~~~ 

and go the following equations and 

where the constant & is determined during the process rJf numerical solution of the 
boundary value problem. in this case we obtain 60 = 1.1165, fo' (0) = 1,0283 
and go (0) = -1.2421. We also adduce the equations and boundary conditions 

(1.10) 

f&o 

g1 = -&6, for q-+ao 

in which the new constant 6, is determined in the same manner as &o. 
In the trail outer region the expansions 

are valid. The form of functions Y’, (-% GI (z), etc. is readily determined 
by the conditions of joining internal and external expansions. We obtain 

Equations (I.. 3) show that the pressure in the external (and, consequently, also in the 
internal) region of the trail is p = 0 (8"). Howevert for elucidation of the 
tlow structure it is important to establish the form of the principal term of the express- 
ion for P. Substituting (1. Xl) and (1.12) fnto (1.3), we obtain 

p;= - 4 Goeaa-‘MD (2) + 0 (ess-‘!a) (1.13) 
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where the choice of the limits of integration is linked with that the axial velocity per- 
turbation at infinity is equal zero, and that by virtue of the Bernoulli equation, the co- 

rresponding pressure perturbation is zero. Determination of successive approximations for 

the above expression does not present serious difficulties. 

2. As noted earlier, the solution in the region of the trail close to the disk edge 
is valid for small S. However at the edge itself where s = 0 that solution has 
a singularity which is apparent in formulas (1.8) and (1.13) for H and P. The on- 
ly way of eliminating the singularity is to introduce in the edge neighborhood a subsidi- 

ary transition region whose dimensions are of a higher order of smallness with respect to 
E. The solution in that region is subject to asymptotic joining in radial direction wi- 

th the K&m&n solution on the one hand, and on the other, with the above solution for 

the trail region. 
In the investigation of flow in the transition region we, first of all, introduce extend- 

ed coordinates r* and Z* by formulas 

(2.1) 
s -= ~“i”*, 2 = &* (a, P > 01 

where parameters CC and fi are to be determined. Inside the transition zone we 

distinguish the inner and outer regions, calling the sublayer in which viscosity and iner- 

tia term of equations are of the same order, the inner region. 
The definition of the outer region of the transition zone comprises the passing to li- 

mit &--to in the Navier-Stokes equations for fixed r* and 2. It is assumed 

that the asymptotic expansions 

(2.2) 

Y (s, 2; E) = r2Yo (2) + &k& (r”, 2) + . . . 

G (s, 2; E) f= Go (2) i E~Is, (r*, 2) + . . . 

P (s, 2; E) = Empl (r*, 2) -t_ * . . 

where the zero subscript again relates to the K&m& solution, are valid in that region. 

We make the following assumptions about the exponent of the small parameter E: 
(2.3) 

a<%, m==k+2(1-a) 

The substitution on these assumptions of (2.2) into the Navier-Stokes equations with 

subsequent passing to limit E -+ 0 yields 
(2.4) 



Sticture of a viscous fluid flow near a rotating disk edge 471 

The first of Eqs. (2.4) can be integrated, yielding 

$r = Y,' (2) D (I"*) 
(2.51 

where the arbitrary additive function of z is assumed to be identically zero owing 

to the conditions pf joining with the K&m&r solution. Using (2.5) we similarly determ- 

ine 

I& = Go’ (z) P) (r*:) (2.81 

$?I t= D” (r*) 6, (2) iz. 7) 

where 6, (2) is the same function as that appearing in (1.13). 

The principal term of expansions for the inner viscous sublayer of the tradition re- 
gion can be determined by analogy with (2,2), assuming that there 

Y {S, 2; e): = @I/+* fr*, 2’) + - . . c4.81 

G {s, 2; E) = 1 + #hl* (r*, z") + . . . 
P (s, z; 8) = Ppf (r*, z*) + *.* 

The princinal terms in (2.8) must join with the principal terms in (2.2) when in the fo- 
rmer z* -+ 00 and in the latter 2 --f 0. This implies that functions 9~11” 
and hi* must behave as aPa/ and &” respectively. But, then, the realization 

of joining requires that n ‘- 28 and q = #h 
In conformity with the definition of the viscous sublayer inertia and viscous forces 

must be of the same order, which implies that condition a = 38 must be satis- 

fied. The solution for the outer region of the transition zone when r* + ~3 must 
join with the solution for the outer region of the trail. For this it is necessary that 

D (r*) + &r*“a npllr r*+o3 (2.9) 

Taking into account (2.9) we find that the joining of expressions for P (2.2) and 
(I. 11) yields I& = a I’ 3 = 0. 

The additional assumption that m crf 2 (1 - B) shows that in the a- 
symptotic approximation pressure pl* may be taken as constant across the viscous sub- 
layer. Taking into account the requirement for joining with solution (2.7) for the pres- 
sure in the outer region sublayer we obtain the general expression 

PI* = a, (0)D” (r*) 
(2.10) 

The last of the formulas required for the determination of exponents in expansions 
(2.2) and (2.8) follows from the condition of equality of order for terms containing pre- 
ssure and viscosity and inertia terms in the viscous sublayer. That condition yields m 
--C$=: -& and, with allowance for (2.3) makes it possible to determine 8. to 
which are linked all other exponents. The obtained values u = ‘/r, fi = ‘11, k = 
s/?, m = V7% n = V7, and q = 2f7 fully correspond to the previously made 

assumptions, and a and fi determine the d~m~sions of the flow transition zone 
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at the disk edge, 

With known exponent a: it is, also, possible to determine with greater precision 
the range of values for s, for which the solution derived in Sect. 1 for the trail region 
is valid. If, for example, it is required that the desired accuracy (1. ‘7) and (1.11) is en- 

sured by the principal terms, it is necessary to set 9’s = 0 (8*‘+, or s =1 0 f&@/l.) 
When a greater number of terms is taken into account in the indicated expansions, the 

result will be different. We denote by i the number of the approximation whose con- 
tribution is negligibly small, and for this more general case set 

$ = 0 (EY), y = ‘6/, (3 + i)-” 
(2.11) 

3, The problem of flow pattern in the neighborhood of the disk edge reduces in 
essence to the solution of equations for the inner sublayer of the transition zone, In con- 

formity with the results obtained in Sect. 2 these equations and boundary conditions are 
of the form 

a%” a2+1* a%* as@,* 
az*ar+az*-- -F---- &z*= 

zzz - CD (0) D”’ o**) + 3 (3.1) 

$1” = a$l* / dz” = h* 5.E 0 102 z+=o, r*<o (3.21 

&* = %pl* / 8~‘~ = $z,* / $2” z 0 fQr z* = 0, I* >O 

92% -+ azsz / 2, h2* + b.z” for F*--,--00 

$1” --+ (a / 2) lz” + D (r*)p, ii,* 3 b [z* + t) (r”)f far z* -.+ co 

*r* -+ r-*2’% (q), &” 3 r**‘~~g@ (3) for r* - 03 (q = a* [+“a) 

where functions fo and gs satisfy Eqs. (1.4). 

It is not possible to affirm uncondltjonally that a solution of problem (3. l), (3.2) 
exists and has a physical meaning. It is, however, possible to refer to the numerical so- 
lution of the similar problem of the flat plate [7] and, also, attempt by following Stew- 

artson [3J to determine the properties of the considered problem for fairly high values of 
j r* 1.. If such analysis does not reveal contradictions with input assumptions and would, 

also, indicate the possibility of determination of integral characteristics of the flow, we 

shall consider that it confirms the assumption of existence of solution of problem (3. If, 

(3.2). 
Let us, first, consider the region of high positive values or r*, i. e. r* + O” * 

The limit form of solution in that region is determined by conditions (3.2), owing to 
that form it is advisable to introduce expansions of the form 

91‘4t -I r%I (11, + ~*{2-~~~a~~ (12) + * . *I 
(3.3) 

fa,” =z r*“*gQ (q) + ,*(‘-n)‘3gn (q) -f- . , . 



?&err: c is a crmtant that cammt be dete~in~ by asymFtQt~c analysis, 

tTsing solution (3.5) it is possible to establish a more precise form of function 
D @*f at considerable positive rQ’ and determine expressions for the compo~~.&~ of 

velocity in the disk plane and, also, to obtslin a more precise expression for pressure 

4 *. We: have 
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Let that term be of the form 

For determining exponent g we reas on as follows. Owing to the symmetry of dimen- 
sions of the transition zone th> value of f s j in formula (3.9) must correspond to the 
estimate defined by (2,11) for the boundary of that zone. Setting 
fsf - EY 

i == 1, we obtain 
and Y = sf14. The quantity Em which links p and pI* in con- 

formity with (2.8) is, by definition, small, and ke shall assume that its square can be 

neglected. Then, if formula (3.9) is to yield a negligibly small quantity P the fol- 
lowing relation must be satisfied: 

27n = n?. + oZ4 - ye 

Substitution into this of known values of m and cc and also the indicated above 
value of Y, yields q = ‘Jay or 

(3.10) 

D (?“I = C,+-“~s + “‘Y Pr * =I ‘@i&D (O)r”-“I* -j- _ ~ * 

where we have again the constant cr, which can be determined only in the course of 

solving the problem as a whole. Using (3.10) we obtain 12 = $0, Ml, =: s*/&‘, 

(0) CiJ and -WI,, zz Q , and Eqs. (3.8) are now satisfied by the following ex- 

pressions 
(3.11) 

where functions U(% P$ %I correspond to the so-called second form of solutions 

of the degenerate hypergeometric equation [8]. 
Away from the disk plane, i. e. when 1 q -+ -w , functions @IO 1 dr 

and 5r* tend to a constant limit whose presence makes it possible to determine the 

foBowing term of the asymptotic expansion of fJ fr*J: 

From this with the use of (2.10) it is possible to obtain the second term of the expan- 
sion for pl* and, then repeat the whole described procedure. 
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The friction stress at the disk surface and the general expression for the coefficient 
of the moment of friction forces are of the form 

(3.13) 

Use is made here of the fact that the region of existence of the last term in brackets of 

the right-hand side of (3.13) corresponds to the region of determination of r*. In con- 

formity with expansion of the type (3.3) the principal term of the integrand in (3.14) 
for i”*+--00 is 

r*-‘ylo) (0) = *4ob g,a (+)‘“g$$ Cl@ (0) ?-*-‘*‘a 

The last expression represents a constant multiplied by a high negative power of F*, 

which makes it possible to consider the integral in the right-hand side of (3.14) as con- 
vergent. The second term in the right-hand side of (3.14) represents the addition to co- 

efficient CM, due to the finiteness of disk. It is proportional to ~‘6 and, evidently, 
has the highest value among other possible corrections to the coefficient of the moment 

of friction forces of an infinite disk. The complete solution of the stated problem re- 

quires numerical integration of system (3.1) with boundary conditions (3.2). 
The aim of this work was the qualitative clarification of the stream pattern in the 

neighborhood of the disk edge, and was achieved without resorting to numerical calcu- 

lations. However, taking all aspects into account, it must be said that the solution wh- 

ich completely satisfies Eqs.(3. l), as well as conditions (3.2) may, nevertheless, con- 
tain discontinuities of the unknown functions or their derivatives when r* = 0. 

If the presence of such singularities is confirmed in the course of calculations, it will 
be necessary to introduce for their elimination in the close neighborhood of the edge 

one more asymptotic region, which should not affect the validity of the obtained here 

results, To estimate the central region dimensions the reasoning in [4] applied to the 

case of the flat plate may be repeated here, to find that the order of dimension 
0 (6”‘) in the radial and axial directions is of the same order, and that the flow in that 
region is defined by the complete Navier-Stokes equations. 

We note in conclusion that the asymptotic multilayer pattern of flow, similar to 
that described here, appears in investigations of a fairly wide class of problems with 

stepwise variation of boundary conditions. In addition to previously cited publications 
[3,4] we may point out other investigations of flow in the neighborhood of edges [9, lo], 
and also [ll-131 devoted to flows close to boundary layer separation points in an incom- 

pressible stream and in a supersonic gas stream. All these investigations have much in 
common between themselves and with the present investigation as regards the principles 
of asymptotic analysis, however, the results presented here reveal certain singularities 
not found in other edge flows, such as: the substantially different order of basic dimen- 
sions than in the case of a plate, the zone of inviscid flow at variable pressure, etc. 
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